dorogagizni.ru

Амалия (Эмми) Нётер, королева без короны. Амалия (Эмми) Нётер, королева без короны Согласно теореме э нетер симметрия пространства определяется

В этом параграфе вариационный подход к задаче механики и, в частности, полученная в § 4 общая формула для вариации функционала будут использованы для того, чтобы установить связь между законами сохранения, которые были получены в предыдущих главах, и общими свойствами пространства и времени, которые находят свое выражение в инвариантности законов механики относительно преобразований систем отсчета. Установление этой связи позволит понять внутреннюю природу законов сохранения и причины, по которым эти законы существуют. Такое понимание особенно важно, ибо оно иногда позволяет предвидеть первые интегралы и тем самым облегчить исследование уравнений, описывающих движение.

Приступая к подготовке материала, который требуется для того, чтобы сформулировать теорему Эммы Нётер, устанавливающую эту связь, рассмотрим какое-либо однопараметрическое семейство преобразований системы отсчета, т. е. координат и времени:

где индекс приписан «новым» координатам и «новому» времени, а - некоторый параметр. Предположим, что преобразование (66) удовлетворяет двум следующим условиям:

1° Это преобразование тождественно при , т. е.

2° Для этого преобразования существует обратное:

Теперь мы можем сформулировать теорему Эммы Нётер. Теорема Нётер. Пусть задана система движущихся в потенциальном поле материальных точек, имеющая лагранжиан , и пусть существует однопараметрическое семейство преобразований (66), удовлетворяющее условиям 1° и 2°. Пусть, далее, лагранжиан L инвариантен по отношению к таким преобразованиям, т. е. «новый» лагранжиан (вычисленный по формуле ) не зависит от и как функция имеет совершенно такой же вид, как и «старый» лагранжиан L как функция . Тогда существует функция , которая не изменяется во время движения этой системы, т. е. является первым интегралом движения. Эта функция имеет вид

где H - гамильтониан рассматриваемой системы.

Доказательство. Рассмотрим два расширенных координатных пространства; одно из них соответствует «старым», а другое «новым» координатам и времени, получепным в результате преобразования (66). В первом из этих пространств (в пространстве q, t) выберем две произвольные точки и проведем между этими точками какую-либо кривую . Тогда однопараметрическое семейство преобразований (66) порождает во втором расширенном координатном пространстве , однопараметрическое семейство кривых (рис. VII.5). Оно получается, если из равенств (66)

исключить .

В силу первого условия, т. е. в силу формул (67), параметру соответствует исходная кривая, т. е. при

Началу и концу кривой , т. е. точкам из пространства , соответствуют в пространстве кривые, заданные параметрически (параметр ) формулами

Эти формулы получаются из формул (70), если вместо t подставить соответственно.

Примем в качестве кривой отрезок от до прямого пути системы с лагранжианом L. Рассмотрим действие по Гамильтону на этом пути:

Заменив в интеграле (72) переменную t на , получим (см. стр. 281)

где функция строится по формуле (64). С учетом новых обозначений (см. условие ):

В силу условий теоремы Э. Нётер не зависит от и как функция своих аргументов совпадает с L:

Таким образом, если выполнены условия теоремы Нётер, то интеграл (72) можно записать следующим образом:

Рассмотрим теперь интеграл (74) как функционал, заданный на однопараметрическом семействе кривых . В равенстве (74) левая часть не зависит от а. Это очевидно, так как при замене переменной интегрирования значение определенного интеграла не меняется. Поэтому в рассматриваемом случае интеграл (74) имеет одно и то же значение на всех кривых из семейства и, следовательно, при всех

Интеграл (74) имеет вид действия по Гамильтону, заданного на однопараметрическом семействе кривых, и поэтому можно воспользоваться общей формулой (60) для вариации действия . В силу (60) имеем

(75)

Равенство (75) верно при любом , но мы воспользуемся им лишь при . В силу условия 1° при равенства (66) превращаются в тождества, т. е. зависит от точно так же, как зависит от t. Но - прямой путь и на нем

Следовательно, при обращаются в нуль и все выражения, стоящие в скобках под знаком интеграла в формулах (75).

Напомним, что сначала надо подставить пределы , а затем выполнить операции , т. е. дифференцирования по параметру. Но при

и в соответствии с формулами преобразования (66)

Учитывая при подстановке пределов эти равенства и тот факт, что , после сокращения на независимое приращение из равенства (76) получаем

где верхний индекс указывает, берется ли соответствующая функция при или

Вспомним, что прямой путь и точки и на нем были выбраны произвольно. Отсюда следует, что функция (69) вообще не меняется вдоль кривой , т. е. на любом прямом пути.

Теорема Эммы Нётер доказана.

Покажем теперь, как, используя только теорему Нётер, можно получить все законы сохранения (первые интегралы), которые были установлены выше из иных соображений.

Закон сохранения механической энергии для консервативной системы. Рассмотрим консервативную (или обобщенно консервативную) систему. В качестве семейства преобразований (66) возьмем «сдвиг по времени»:

Непосредственно видно, что преобразование (78) удовлетворяет условиям 1° и 2°. Лагранжиан (так же как и гамильтониан) консервативной системы не зависит явно от времени, а , т. е. функция в данном случае равна единице. Поэтому преобразование (66) заведомо не меняет вид лагранжиана , разумеется, гамильтониана) и из теоремы Нётер следует, что консервативная система должна иметь первый интеграл вида (69). Но в данном случае все функции в силу преобразования (78) тождественно равны , т. е. не зависят от , и, следовательно, производные от них по параметру а равны нулю, а и формула (69) принимает вид

Таким образом, из теоремы Нётер следует, что при движении обобщенно консервативной системы ее обобщенная энергия H не меняется. При движении же консервативной системы и не меняется ее полная механическая энергия.

Закон сохранения импульса для циклических координат. Рассмотрим теперь систему с циклической координатой

Непосредственно видно, что это преобразование удовлетворяет условиям 1° и 2°. Лагранжиан (а значит, и гамильтониан) системы не зависит от циклических координат, и следовательно, вид этих функций не меняется при преобразовании (79). Следовательно, в силу теоремы Нётер имеет место первый интеграл вида (69). Но при преобразовании , остальные . Следовательно, в данном случае формула (69) принимает вид

Далее мы получим два закона сохранения, имеющие место при рассмотрении замкнутых систем. В связи с этим сделаем следующее общее замечание. Требование замкнутости системы означает, что все силы, действующие на материальные точки системы, зависят лишь от взаимного расположения точек и расстояний между ними. В связи с этим любые преобразования координат, сохраняющие взаимное расположение точек и расстояния между ними, не изменяют уравнения движения, т. е. не меняют вид лагранжиана.

Закон сохранения количества движения для замкнутых систем. Рассмотрим теперь замкнутую систему, движущуюся в потенциальном поле. В качестве обобщенных координат примем декартовы координаты точек и применим «сдвиг вдоль одной из осей координат», например вдоль оси :

(здесь N - число точек системы).

В связи с тем, что при сдвиге начала координат вдоль какой-либо оси расстояние между точками системы не меняется, не меняется и потенциальная энергия системы, а значит, и функция Лагранжа. Очевидно, преобразование (80) удовлетворяет условиям 1° и 2°. Таким образом, все условия, которые теорема Нётер накладывает на однопараметрическое семейство преобразований, выполнены. В силу этой теоремы имеет место первый интеграл (69). В данном случае все для координат , так же как и , равны нулю, а функции для координат таковы, что .

Поэтому в формуле (69) член, содержащий гамильтониан, обращается в нуль, а оставшаяся в правой части сумма равна

но и поэтому первый интеграл (69) имеет вид

(81)

Равенство (81) есть не что иное, как закон сохранения количества движения в проекции на ось .

Совершенно аналогично, используя преобразования типа (80) для сдвига не вдоль оси x, а вдоль осей у и z, устанавливаем сохранение проекций количества движения на оси у и z соответственно. Таким образом, закон сохранения количества движения при движении замкнутой системы в потенциальном поле полностью доказан.

Закон сохранения кинетического момента для замкнутой системы. Вновь рассмотрим замкнутую систему, движущуюся в потенциальном поле, которое получается в результате взаимодействия точек системы. Как и ранее, в качестве обобщенных координат примем декартовы координаты точек и рассмотрим преобразование поворота системы координат вокруг, например, оси z:

Непосредственно видно, что преобразование (82) удовлетворяет условию 1°, т. е. при превращается в тождественное преобразование. Легко проверить, что оно удовлетворяет и условию 2°, т. е. что система уравнений (82) разрешима относительно «старых» координат, ибо определитель этой системы равен . При повороте системы координат взаимное расположение и расстояние между точками системы не меняются, и следовательно, не меняется потенциальное поле, а значит, не меняется и L. Таким образом, в силу теоремы Нётер и в этом случае имеет место первый интеграл (69). В случае преобразования (82) для координат всех точек системы имеет место соотношение

Аналогично для всех координат

С другой стороны, и поэтому в данном случае

т. е. проекция кинетического момента на ось z сохраняется.

Совершенно аналогично, рассматривая поворот системы координат вокруг осей x и y, устанавливаем сохранение во время движения проекций кинетического момента на оси x и у соответственно, т. е. полностью доказываем закон сохранения кинетического момента для замкнутой системы, движущейся в потенциальном поле.

Таким образом, для случая движения в потенциальных полях мы получили из теоремы Нётер все законы сохранения, которые были рассмотрены выше. Теорема Нётер вскрыла природу их возникновения, связанную с инвариантностью уравнений движения при различных преобразованиях координат и времени. Закон сохранения энергии является следствием инвариантности уравнений консервативной системы при сдвиге вдоль оси времени, закон сохранения количества движения - результат инвариантности уравнений замкнутой системы по отношению к сдвигам вдоль осей координат, а закон сохранения кинетического момента - результат инвариантности уравнений замкнутой системы по отношению к поворотам вокруг осей координат.

Теорема Нётер может быть использована и в тех частных случаях, когда удается найти иные преобразования, сохраняющие лагранжиан.

Как сказано выше, обычно выделяют внешние и внутренние симметрии. Внутренние симметрии – это геометрические и калибровочные симметрии самой материи, отражающие инвариантность (независимость) свойств элементарных частиц и их взаимодействий относительно определенных преобразований. Большинство из них ярко проявляются лишь в микромире, присутствуя на макро- и мегауровне в скрытом виде. Внешние симметрии – это симметрии пространственно-временного континуума, одинаково ярко проявляющиеся на всех уровнях организации материи.

Выделяют следующие симметрии пространства-времени :

1. Однородность пространства . Это – сдвиговая симметрия пространства. Она заключается в эквивалентности, равенстве всех точек пространства, то естьотсутствии в пространстве каких-либо выделенных точек . Параллельный перенос (сдвиг) системы как целого в пространстве не приводит к изменению ее свойств, то есть физические законы инвариантны относительно сдвигов в пространстве .

2. Изотропность пространства . Это – поворотная симметрия пространства. Она заключается в равенстве всех направлений в пространстве, то есть вотсутствии в пространстве выделенных направлений . Поворот системы как целого в пространстве не приводит к изменению ее свойств, то естьфизические законы инвариантны относительно поворотов в пространстве.

3. Однородность времени . Сдвиговая симметрия времени отражает равенство всех точек времени, то естьотсутствие выделенных точек начала отсчета времени . Перенос системы как целого во времени не приводит к изменению ее свойств, то естьфизические законы не меняются с течением времени .

Что касается изотропности времени , то вопрос о наличии этой симметрии долгое время оставался открытым и во многом остается дискуссионным до сих пор. Так, в классической механике время симметрично: идеальные механические процессы полностью обратимы, и “поворот во времени” не приводит к изменению законов механики. В ОТО, где время, наряду с пространством, рассматривается как одна из геометрических координат, также постулируется эквивалентность его прямого и обратного течения. Подавляющее большинство элементарных процессов, протекающих в результате сильного, электромагнитного и слабого взаимодействий, также симметричны по отношению к этому преобразованию (за исключением распадов K0L-мeзонов). Но в то же время, развитие термодинамики (см. тему 2.5) показало, что в макроскопических процессах, связанных с превращением энергии, происходит ее необратимое рассеивание. Таким образом, все реальные процессы, происходящие на уровнемакро- и мегаскопических материальных систем не инвариантны по отношению к направлению времени. Его изменение на противоположное привело бы к изменению законов термодинамики: необратимое рассеивание энергии сменилось бы ее самопроизвольной концентрацией. Следовательно, для этих процессов времяанизотропно , не обладает симметрией поворота.

Связь законов сохранения с симметрией (теорема Нетер)

Развитие математических методов описания симметрии, в частности аналитической механики Лагранжа и Гамильтона, показало, что как законы классической механики Ньютона, так и уравнения электродинамики Максвелла могут быть выведены математическим путем из соображений симметрии. Методы аналитической механики можно распространить и на квантовую механику, где классические теории теряют свою применимость.

Важнейший результат в этой области теоретической физики связан с именем выдающейся женщины-математика Амалии (Эмми) Нетер (1882–1935). В 1918 г. Нетер была доказана теорема, позднее названная ее именем, из которой следует, что если некоторая система инвариантна (неизменна) относительно некоторого преобразования, то для нее существует определенная сохраняющаяся величина . Иными словами, существование любой конкретной симметрии приводит к соответствующему закону сохранения .

Эта теорема справедлива для любых симметрий – в пространстве-времени, степенях свободы элементарных частиц и физических полей, – то есть она носит универсальный характер . Теорема Нетер стала важнейшим инструментом теоретической физики, утвердившим особуюмеждисциплинарную роль принципов симметрии при построении физической теории .

Непрерывные симметрии приводят к существованию законов сохранения, проявляющихся на всех уровнях организации материи. Так, согласно теореме Нетер, из однородности (сдвиговой симметрии) пространства следуетзакон сохранения импульса (количества движения), из изотропности (поворотной симметрии) пространства –закон сохранения момента импульса (момента количества движения), из однородности времени следуетзакон сохранения энергии . Из калибровочной симметрии динамики заряженных частиц в электромагнитных полях следуетзакон сохранения электрического заряда.

Что касается дискретных симметрий, то в классической механике они не приводят к каким-либо законам сохранения. Однако в квантовой механике, в которой состояние системы описывается волновой функцией, или для волновых полей (например, электромагнитного поля), где справедлив принцип суперпозиции, из существования дискретных симметрий также следуют законы сохранения некоторых специфических величин, не имеющих аналогов в классической механике. Так, зеркальная симметрия, или пространственная инверсия (Р ), приводит к закону сохранения пространственной четности; симметрия замены всех частиц на античастицы, или зарядовое сопряжение (С ) – к закону сохранения зарядовой четности и т. д.

Теорема Нетер дает наиболее простой и универсальный метод получения законов сохранения. Особенно важное значение имеет теорема Нетер в квантовой теории поля, где законы сохранения, вытекающие из существования определенной группы симметрии, являются часто основным источником информации о свойствах изучаемых объектов.

Немецкий математик.

Она была приглашена Давидом Гильбертом для чтения лекций и проведения научной работы в Гёттингенском университете.

«Эмми Нётер имела мало общего и легендарной «математичкой» Софьей Ковалевской , очаровавшей даже Вейерштрасса своим умом и молодым обаянием. Она была совсем лишена женственности как во внешности, так и в своих манерах. Даже сегодня первое, что вспоминают знавшие её мужчины, - это: «У неё был громкий и неприятный голос», «Она выглядела, как энергичная и очень близорукая прачка», «Её одежда всегда была мешковатой».
Все они с восторгом цитируют деликатное замечание , что «грации не стояли у её колыбели».
Однако Эмми Нётер суждено было оказать гораздо более важное влияние на математику, чем очаровательной Софье .
Даже в то время она уже обладала солидными знаниями некоторых предметов, необходимых Гильберту и Клейну для их работы в теории относительности. Оба они решили, что она должна остаться в Гёттингене. Однако несмотря на то, что Гёттинген был первым университетом в Германии, присудившим докторскую степень женщине, получить хабилитацию (Термин происходит от латинского «habilis» - способный, пригодный и означает получения права войти в состав преподавателей университета - Прим. И.Л. Викентьева) для неё было нелёгким делом.
В голосовании о приёме хабилитации должен был принимать участие весь философский факультет, включавший, помимо представителей естественных наук и математики, также философов, филологов и историков. Особое противодействие исходило от нематематической части факультета.
Их формальное возражение сводилось к следующему: «Как можно допустить, чтобы женщина стала приват-доцентом? Став таковым, она сможет затем стать профессором и членом университетского сената. Разве можно допустить, чтобы женщина входила в сенат?» Неформальное возражение было таким: «Что подумают наши солдаты, когда, вернувшись в университет, они увидят, что им придётся учиться, сидя у ног женщины?»
Гильберту эти рассуждений напоминали те, которые он слышал, когда пытался пробить перед этими же членами факультета диссертацию Громмера. «Если студенты без диплома гимназии будут всегда писать такие же диссертации, как Громмер, - сказал он тогда, - то нужно будет издать закон, запрещающий устраивать выпускные экзамены». Теперь с той же прямотой он ответил на их формальные возражения против доцентуры Эмми Нётер: «Meine Herren, я не вижу, почему пол кандидата должен быть причиной против присуждения ему звания приват-доцента. В конце концов, ведь сенат - не бани».
Когда, несмотря на такое возражение, ему всё же не удалось добиться присуждения хабилитации Эмми Нётер , он по-своему решил проблему сохранения ее в Гёттингене.
Лекции будут объявлены под именем профессора Гильберта , а читать их будет госпожа Нётер. Война продолжалась».

Констанс Рид, Гильберт, М., «Наука», 1977 г., с. 187-188.

В 1918 году Эмми Нётер доказала фундаментальную теорему теоретической физики, связывающую законы сохранения с симметрией системы, получившую название «Нётер теорема».

«Теорема Э. Нётер утверждает, что всякому непрерывному преобразованию координат в инерциальной системе отсчёта, соответствует некоторая сохраняющаяся величина (инвариант ). Поскольку рассматриваемое преобразование тесно связано со своей симметрией пространства и времени (однородного пространства, изотропного пространства и однородности времени), то каждому свойству пространства и времени должен соответствовать в соответствии с классической механикой свой определённый закон сохранения.
С однородностью пространства, т.е. симметрией законов физики по отношению к пространственным сдвигам начала координат, связан закон сохранения импульса. С изотропностью пространства, т.е. с равноценностью всех пространственных направлений и, следовательно, с симметрией относительно поворота системы координат в пространстве, связан закон сохранения момента импульса.
Представление об однородности времени (симметрии по отношению к сдвигам времени) приводит к закону сохранения энергии. Это означает, что течение времени само по себе не может вызвать изменение энергии некоторой замкнутой системы.
Практическое значение теоремы Э. Нётер не ограничивается только тем, что она устанавливает связь классических законов сохранения с видами симметрии, имеющими геометрическую природу.
При наличие в физической системе симметрии другого рода, например, динамической (математической), данные симметрии прогнозируют частные законы сохранения, которые также обладают функцией запрета на локальные явления саморазвития».

Балакшин О.Б. , Гармония саморазвития в природе и обществе: подобие и аналогии, М., Издательство ЛКИ, 2008 г., с. 112.

Эмми Нётер смогла стать приват-доцентом в1919 году, а сверхштатным профессором - в 1922 году.

В 1933 году, когда к власти в Германии пришли фашисты, Эмми Нётер переехала в США.

Узнав о её смерти, Альберт Эйнштейн написал: «Большинство людей все свои силы расходуют в борьбе за свой хлеб насущный. Даже многие из тех, кого судьба или какое-либо особое дарование «избавили от необходимости вести эту борьбу, большую часть сил отдают умножению мирских благ и своего состояния.
За подобными усилиями, направленными к накоплению всяческих благ, весьма часто кроется иллюзия, будто в этом и состоит наиболее существенная и желанная цель, к которой надлежит стремиться.
К счастью, существует меньшинство, состоящее из тех, кто рано осознал, что самые прекрасные переживания и наибольшее удовлетворение человечество получает не извне, а что они связаны с развитием собственных чувств, мыслей и поступков каждого отдельного индивидуума.
Подлинные художники, исследователи и мыслители, всегда были людьми такого рода. Как бы незаметно ни проходила жизнь этих людей, плоды их усилий оказывались самым драгоценным вкладом в то наследство, которое поколение оставляет своим преемникам.
Несколько дней тому назад в возрасте пятидесяти трёх лет скончалась выдающийся математик профессор Эмми Нётер , когда-то связанная с Гёттингенским университетом, а в последние два года работавшая в колледже Брин Моур. По отзывам наиболее компетентных из ныне живущих математиков, фрейлейн Эмми Нётер входила в число самых значительных и самых творческих гениев математики, появившихся с тех пор, как женщины стали получать высшее образование.
В области алгебры, которой наиболее одарённые математики занимались на протяжении столетий, она открыла методы, оказавшие огромное влияние на развитие современного поколения молодых математиков. Чистая математика - это своего рода поэзия логики идей. Математики пытаются найти как можно более общее представление об операции, которое позволило бы просто, логично и единообразно охватить возможно более широкий круг формальных соотношений»

Альберт Эйнштейн, Памяти Эмми Нетер / Собрание научных трудов в 4-х томах, Том 4, 1967 г., «Наука», с.108.

Общие свойства пространства и времени:

1. Пространство и время объективны и реальны, т.е. не зависят от сознания и воли людей.

2. Пространство и время являются универсальными, всеобщими формами бытия материи. Нет явлений, событий предметов, которые бы существовали вне пространства или вне времени.

Основные свойства пространства :

1. Однородность – все точки пространства обладают одинаковыми свойствами, нет выделенных точек пространства, параллельный перенос не изменяет вид законов природы.

2. Изотропность – все направления в пространстве обладают одинаковыми свойствами, нет выделенных направлений, и поворот на любой угол сохраняет неизменными законы природы.

3. Непрерывность – между двумя различными точками в пространстве, как близко бы они не находились, всегда есть третья.

4. Евклидовость описывается геометрией Евклида. Признаком евклидовости пространства является возможность построения в нём Декартовых прямоугольных координат. Но согласно ОТО Эйнштейна, при наличии в пространстве тяготеющих масс пространство искривляется, становится неевклидовым.

5. Трехмерность – каждая точка пространства однозначно определяется набором трёх действительных чисел координат. Это положение вытекает из связи структуры пространства с законом тяготения. (П. Эренфест в 1917 г. исследовал вопрос, почему мы способны воспринять только пространство трёх измерений. Он доказал, что «закон обратных квадратов», по которому действуют друг на друга точечные гравитационные массы или электрические заряды, обусловлен трёхмерностью пространства. В пространстве n измерений точечные частицы взаимодействовали бы по закону обратной степени (n–1). Поэтому для n=3 справедлив закон обратных квадратов, т.к. 3–1=2. Он показал, что соответствуя закону обратных кубов, планеты двигались бы по спиралям и быстро упали бы на Солнце. В атомах при числе измерений, большем трёх, также не существовало бы устойчивых орбит, т.е. не было бы химических процессов в жизни.

Основные свойства времени :

1. Однородность - любые явления, происходящие в одних и тех же условиях, но в разные моменты времени, протекают совершенно одинаково, по одним и тем же законам.

2. Непрерывность – это когда между двумя моментами времени, как бы близко они ни располагались, всегда можно выделить третий.

3. Однонаправленность или необратимость – это свойство времени, которое можно рассматривать как следствие второго начала термодинамики или закона возрастания энтропии. Все изменения в мире происходят от прошлого к будущему.

Указанные свойства пространства и времени связаны с главными законами физики – законами сохранения. Если свойства системы не меняются от преобразования переменных, то ей соответствует определённый закон сохранения. Это одно из существенных выражений симметрии в мире. Согласно Э. Нётер теореме, каждому преобразованию симметрии, характеризуемому одним непрерывно изменяющимся параметром, соответствует величина, которая сохраняется для системы, обладающей этой симметрией.


Из симметрии физических законов относительно:

1) сдвига замкнутой системы в пространстве (однородность пространства) следует закон сохранения импульса;

2) поворота замкнутой системы в пространстве (изотропность пространства) следует закон сохранения момента импульса;

3) изменения начала отсчёта времени (однородность времени) следует закон сохранения энергии.

Вопросы для повторения и самоконтроля

1. Каковы были представления о пространстве и времени в доньютоновский период?

2. Как трактовал И. Ньютон пространство и время?

3. Какие представления о пространстве и времени стали определяющими в теории относительности А. Эйнштейна?

4. Какие основные свойства пространства вам известны?

5. Какие основные свойства времени вам известны?

6. Сформулируйте теорему Э. Нетер?

Загрузка...

Реклама